
Comp 540 Final Report:
Galaxy Zoo Challenge with Extremely Randomized Trees

Matt Delhey
matt.delhey@rice.edu

Abstract

The Galaxy Zoo Challenge asks participants to predict proportions of user classifications of galaxy mor-
phologies. Using the Extra-Trees algorithm and data preprocessing and augmentation, an error rate of
0.12859 and rank of 145/329 was achieved. The key idea behind the solution was to mimic the success of
convolutional neural networks by implementing a large model with lots of randomness to combat overfit-
ting. While this approach performed moderately well, a feature engineering focused approach would likely
perform better given my computational limitations.

1 Introduction

1.1 Galaxy Zoo Challenge

The Galaxy Zoo challenge was a data mining competition hosted on Kaggle1 that asked participants to re-
produce the probability distributions derived from human classifications of galaxy morphologies taken from
telescope images. The provided data has two components: (1) the telescope images2 and (2) the probability
distributions related to each image, generated by the citizen scientist volunteers. Both components of the
data underwent significant filtering and preprocessing3, which is documented in detail in the Galaxy Zoo 2
paper ([2] Willett, Kyle W., et al.).

The task, then, is to predict the user response distribution of the galaxy morphologies using the very same
telescope images. This is distinct from just classifying the galaxies themselves: in our case, we are trying to
predict user responses and not necessarily the actual galaxy morphologies.

Users provide responses to the galaxy morphologies through the help of a decision tree, which can be
seen in Figure 1. The data represents the proportions of users who selected each possible response. In total,
there are 11 tasks or probability distributions and 37 responses. For each galaxy image, we are either given
the 37 responses (the training case), or asked to predict the 37 responses (the testing case).

The model is then evaluated using a standard root mean squared error (RMSE). I like to think of the
RMSE as the standard deviation of the unexplained variance, giving an absolute quality of the model in
terms of (i.e. on the same scale as) the response. Its formal characterization for this competition is:4:

RMSE =

√√√√ 1

N

N∑
i=1

(pi − ai)2

Where
1https://www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge
2All telescope images used in the Galaxy Zoo 2 dataset were taken from the Sloan Digital Sky Survey, which consists of approximately

one million galaxy images. Our dataset consists of 61, 578 train images and 79, 975 test images.
3The preprocessing resulted in data that was rotation, scale, and translation invariant.
4https://www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge/details/evaluation

1

matt.delhey@rice.edu
https://www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge
https://www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge/details/evaluation

• N is the number of galaxies times the total number of responses (e.g. for the training set there are
61, 578 images, so N = 61, 578 ∗ 37 = 2, 278, 386).

• pi is the predicted value for each response.

• ai is the actual value for each response.

Figure 1: Provided flowchart for the user classification tasks for Galaxy Zoo volunteers. Each separate colored box
represents its own probability distribution. Tasks are color-coded by their relative depths in the decision tree. Tasks
outlined in brown are asked for every galaxy. Tasks outlined in green, blue and purple are one, two, or three steps below
branching points in the decision tree. Flowchart taken from the Galaxy Zoo 2 paper ([2] Willett, Kyle W., et al.).

1.2 Interpreting the problem

I approached the Galaxy Zoo challenge as a multiple regression problem. While one could approach this
problem from it’s semantics, attempting to generate 11 probability distributions and taking into account
the various constraints, treating the problem as multiple regression simplified the task. In my own experi-
ence, using the constraints imposed by the problem semantics did not decrease the overall error. This was
confirmed at the end of the competition: most competitors also reduced the problem to regression.

2

I did, however, implement a hard constraint, forcing all predicted values to fall between 0 and 1, inclu-
sively. So, for example, a predicted value of 1.1 would be converted to a prediction of 1. As my models
improved, the forcing effect became negligible in the overall error of the model.

1.3 Background & related work

The first Galaxy Zoo challenge asked participants to construct a classifier to determine if each galaxy was
either elliptical, spiral, or merger. This corresponds to the first question in the decision tree for our compe-
tition. The first competition was ran on a much smaller dataset, consisting of images that had been hard
labeled by professional astronomers. The state of the art for this case was a misclassification rate of about
7%, using a neural network with two hidden layers and 2N nodes each5, where N is the number of input
parameters ([1] Banerji, Manda, et al). It is important to note that this model was trained using features
that were not available in the Galaxy Zoo 2 competition, i.e. not extracted from only the images themselves.

Many of top scoring solutions to the Kaggle competition utilized large convolutional neural networks
(CNNs). Indeed, the top three scoring solutions all used convolutional neural networks 6 and two of used
Alex Krizhevsky’s cuda-convnet library ([3] Krizhevsky, Sutskever, Hinton). The general consensus between
these three solutions was to train a very large network and avoid overfitting using data augmentation, i.e.
random transformations and perturbations of the training data.

1.4 My approach in context

While large convolutional networks seem to be the best performers for this problem, they have the primary
drawback of being computational intensive. All three of the winning solutions, for example, measured their
training time in days and had the aid of current generation GPU’s. Rather than try to compete at the level of
computation, I instead only used their conceptual essence: a large model with lots of randomization.

2 Methods

At a high level, my method was to use a large committee of extremely randomized decision trees trained on
randomly manipulated data in order to reduce overfitting.

2.1 Preprocessing

I used the following preprocessing steps for the each of the images:

1. Crop the images to 200x200 pixels, retaining color. This cuts out the noise in the outer part of the
galaxies.

2. Downsample the images to 64x64 pixels. This greatly reduces computation time.

3. Random data augmentation for the training images7:

• Random angle rotation, chosen from Normal(0, 0.3).

5The resulting architecture is N:2N:2N:3. The authors stated that additional nodes and hidden layers did not improve performance.
6The winning solutions can be found at:

1. http://benanne.github.io/2014/04/05/galaxy-zoo.html

2. https://github.com/milakov/nnForge/blob/master/examples/galaxy_zoo/galaxy_zoo.pdf?raw=true

3. https://github.com/tund/kaggle-galaxy-zoo/blob/master/report/gz_report.pdf?raw=true

7Adapted from sedielem’s winning solution.

3

http://benanne.github.io/2014/04/05/galaxy-zoo.html
https://github.com/milakov/nnForge/blob/master/examples/galaxy_zoo/galaxy_zoo.pdf?raw=true
https://github.com/tund/kaggle-galaxy-zoo/blob/master/report/gz_report.pdf?raw=true

• Random scaling, chosen from Uniform(0, 360).

• A chance to flip the image, chosen from Bernoulli(0.5).

All of these potential augmentations are combined into a single affine transformation. Galaxy mor-
phologies are scale and rotational invariant, so one could use this method to generate more “training”
data as well.

4. Flatten the image by converting it to a 64 ∗ 64 by 3 matrix, where the three columns represent the RGB
color.

5. Scale the image by dividing each element by 255.

6. Whiten the flat matrix, i.e. normalize on a per color basis where each color is divided by its standard
deviation giving it unit variance.

The results of the preprocessing can be seen in Figure 2. The goal was to reduce overfitting to the training
dataset by introducing randomness. Whatever features picked out from the augmented data would be the
core features for predicting accurately on the test set.

2.2 Algorithm: Extra-Trees

I used the Extra-Trees (ET) algorithm, developed by Geurts, Ernst and Wehenkel ([4] Geurts, Ernst, and
Wehenkel), for my final Kaggle submission. The implementation was done in python with the scikit-learn

library8.
The Extra-Trees algorithm is similar to Random Forests and other ensembles of trees. It’s defining contrast

to these other methods is its inclusion of even more randomization and its lack of bagging.
In a Random Forest, each tree is built from a bootstrap sample drawn from the training dataset, wherein

each split is chosen from a random subset of features. This increases the bias of each individual tree but
results in fewer correlated errors among the trees. If we consider these trees as a committee and take
their average, the resulting model is of low variance. This often results in superior models relative to non-
randomized trees.

As mentioned, Extra-Trees implements even more randomization into the ensemble process. Extremely
randomized trees are all built using the original training dataset without bagging. For each split, both the
subset of features (variable index) and the value at which to split (cut-point, variable splitting value) are
randomized. The resulting committee is similar to Random Forests, except that variance sees slightly more
reduction at the cost of a slightly greater increase in bias9.

The intuition for preferring this algorithm for this particular problem was the goal of creating a model
large enough to accurately predict the 37 responses with enough randomization to reduce overfitting. In a
sense, this can be seen as an attempt to mimic the essence of the convolutional neural networks.

2.3 Model Parameters

There are two sets of parameters for Extra-Trees, those that describe the behavior of the each tree (max_features
or K, max_depth, min_samples_split or nmin, min_samples_leaf) and the number of trees to use in the
ensemble (n_estimators).

The parameter K determines both the number of features and the number of potential splits per feature.
For each split in the trees, K random features are selected. For each of feature selected, K random splits are
selected. Therefore, at the creation of each node during training the model must score K2 potential splits.

8For more information regarding this implementation, see http://scikit-learn.org/stable/modules/sklearn.ensemble.

ExtraTreesRegressor.htm
9For a full description of the Extra-Trees algorithm see the Geurts, Ernst, and Wehenkel paper.

4

http://scikit-learn.org/stable/modules/sklearn.ensemble.ExtraTreesRegressor.htm
http://scikit-learn.org/stable/modules/sklearn.ensemble.ExtraTreesRegressor.htm

Figure 2: Three examples of the image preprocessing. The left side images are the originals, and the right side images
are those used as the input to the learning algorithm.

5

The potential splits are scored by their relative variance reduction10. Predictions are made by pushing every
new point through each tree and then averaging their predictions.

The other parameters that determine the behavior of the tree construction are primarily for prevent
overfitting by giving extra conditions for stopping tree growth. In my experience, changing these conditions
did not have a large effect on the overall error.

Model parameters were found using an incomplete grid search, using the validation framework described
in the section below. I say incomplete because computational limitations forced me to limit the number of
different parameters I could test. The model parameters that I used were:

parameter description value
n_estimators the number of trees in the forest 500

max_features (K) number of random features to consider
per split and the number of random
splits to consider per feature

sqrt(64 ∗ 64) = 64

max_depth maximum number of splits per tree 100

min_samples_split (nmin) minimum number of samples to split a
node

2

min_samples_leaf minimum number of samples required
in each leaf for a split to be considered

1

2.4 Performance, Training and Validation

Model performance was primarily conducted using the standard RMSE, as described previously. Models were
also analyzed using learning curves and error analysis, which are discussed in more detail in the results.

Model selection and model assessment was done locally using constant, randomly selected hold out
evaluation and test sets. The split used was 60% for training, 20% for validation, and 20% for testing or
evaluation. Therefore, each submitted model had associated train, validation, test, and leaderboard errors.
Such a method ensured that no training data bias was created hyperparameters, but also left me vulnerable
to potentially biased hold out sets. Therefore, I also calculated a random hold out error, which randomly
split the data into 70% train and 30% test and then evaluated.

I relied primarily on my testing hold out error and random hold out error to determine which models
to upload to Kaggle. During the competition, there was also a public leaderboard which was calculated on
approximately 25% of the test data. Because Kaggle allowed for 5 submissions every 24 hours, I used the
Kaggle leaderboard to compare with my own hold out errors for most of my models.

3 Results

Fitting the Extra-Trees model on the entire training dataset results in an RMSE of 0.12859 on the Kaggle
private leaderboard11, which is the final standings of the competition.

The learning curve of a smaller, yet very similar model trained using 32x32 pixel images can be seen in
Figure 3. The learning curve for the full model is not shown due to limited computation time. An analysis of
this learning curve gives us an idea of the limitations of the method implementation.

The model appears to be both overfitted and underfitted. On the one hand, the test error is significantly
greater than the train error indicating overfitting. On the other hand, even the overfitted train error is

10Score(s, S) =
V ar[Y |S]− |S1|

|S| V ar[Y |S1]−
|S2|
|S| V ar[Y |S2]

V ar[Y |S]
. Where Y is the response associated with the subset S and S1 and S2

represent the potential splits.
11http://www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge/leaderboard/private

6

http://www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge/leaderboard/private

Figure 3: The learning curve of the Extra-Trees model, generated using all of the training data.

around the level of the winning solutions indicating that my features are likely not rich enough for achieving
competitive accuracy. This curve, then, is a testament to the difficulty of the problem. Indeed, multiple
response regression and object recognition are hard tasks on their own. Combined, these two problems
require a model that is systematically both (1) rich enough to accurately fit many continuous responses and
(2) regularized or randomized in some way to avoid overfitting. The learning curve demonstrates that my
method, in at least a limited sense, failed in both of these dimensions.

3.1 Feature importance

Figure 4 shows two visualizations of the feature importance in the ET model. The feature heatmap shows
that the most useful features were those in the center of the image. This isn’t an entirely shocking finding,
but invites one to wonder how a contour approach to feature engineering would work out. The bar chart
shows that blue was the most important color in the model, whereas red is significantly less important.

One possible explanation for the relatively low importance allocated to red is the redshift phenomena,
documented by Willett, Kyle W., et al. The general idea is that, due to distortions in space, the wavelength
of light increases thus shifting its colors to become more “red”. Although images were processed to take in
account this effect, it is possible that the problem still effected the dataset. Because redshift is not related to
the galaxy morphology, this could help explain why it was found to be relatively noisy.

3.2 Error analysis

In Figure 5, I’ve included the top 4 galaxies that saw the largest evaluation error in the model. These galaxies
are examples of those in which responses to the first question were split about evenly between “smooth” and
“features or disk” (e.g. 0.46 to 0.51, or 0.55 to 0.45). The response to this question leads the user down
different decision trees. This isn’t inherently a problem, except that there are class imbalances between
“smooth” and “features or disk” galaxies and very few cases with approximately even splits. This causes the
model to treat these cases as weak “smooth” galaxies as opposed to a toss up with “features or disk”. It is
somewhat comforting, however, that the Extra-Trees model struggles on the very same cases that are difficult
for human beings.

7

Figure 4: (Left) Feature heatmap, where color represents the relative pixel position importance. The brighter the color,
the more important the pixel. White is the highest importance. This heatmap was generated using the 32x32 model.
(Right) Bar chart of the relative importances of each image color. This ratio of importance held constant over most
images.

3.3 What didn’t work

The list of methods and approaches that I tried that did not improve performance is much longer than the
list of those that did. Here are a few of the most noteworthy:

• feature engineering: contours, histograms of gradients, image deskewing, color perturbation.

• least squares regression: with and without L1 and L2 regularization

• dimensionality reduction: PCA and non-negative matrix factorizations

• other models: random forest regression, k-nearest neighbors regression, small neural networks, kernel
neural networks, kernel SVM

3.4 How I placed

During the competition, my best error was 0.13950 putting me in 195th out of 329. This model was linear
regression trained on cropped but otherwise raw 32x32 images. After the competition, my best error was
0.12859 which would have put me in 145th place. This result was reached using the methods described
herein. To put this performance in perspective, the top three winning solutions were between 0.07492 and
0.07869. In order to place in the top 10%, you had to beat 0.09470 and to place in the top 100, an error of
0.11827.

4 Discussion and Conclusions

The Galaxy Zoo competition was, on my analysis, a challenging machine learning task. Here I would like to
discuss what I found to be the two most significant sources of difficulty: computation and feature engineer-

8

Figure 5: The top 4 galaxies that saw the largest evaluation error in the model. The RMSE validation errors, starting at
the top: 0.37696, 0.36980, 0.36511, 0.35606.

9

ing.
Computing on the Galaxy Zoo dataset was itself a problem. While the dataset wasn’t “webscale” large, it

was, for example, impossible to fit the entire, unaltered training dataset into memory. Even after reducing the
dimensionality of the images, the training and test datasets where still in the 8 gigabyte range. However, this
problem wasn’t entirely fatal at the data stage, and could be mitigated by processing the images one-by-one.

Fitting models to the dataset, however, was another story. As mentioned previously, many of the best
scoring solutions utilized convolutional neural networks (Deep Learning) implemented in massive parallel
on GPU’s. The requirement of a GPU alone killed any chance I had at competing in the computation game.
However, opting for Extra-Trees, a so called “shallow” learning algorithm, did not solve my computational
problems.

Extra-Trees, and ensemble methods like it, are inherently parallel tasks as each tree can be trained in-
dependently of the others. Each tree, however, can be costly to construct. Given the nature of Extra-Trees,
constructing many trees is important for good prediction accuracy. The computational constraints of using
a large ensemble of large trees with large feature vectors made it difficult to iterate on my models and run
parameter optimization.

Feature engineering was the other major headache. My final model did not include any features that
were explicitly extracted from the images, despite my best efforts to include these features. Every feature
vector that I created that differed from the raw RGB pixels simply did worse. I know that this is not the
case for every participant. On the contrary, many high scoring participants claimed that regularized linear
regression, perhaps with the addition of boosting, and well curated features resulted in error rates as low as
0.11.

Why did my attempts at feature engineering fail? I think that I needed to create a robust methodology
for testing new features and crafting features by error analysis. During the competition, I attempted to
extract features ad-hoc and often tested them in addition to the raw feature vectors. This made it difficult to
determine how well these features were performing.

Looking back at the the computational problem, I would take a reasonable subset of the training and
validation data and do my model iterations off this subset. I have in mind a sample of about 10, 000 galaxy
images. Looking back at the feature engineering problem, I would make feature engineering a priority given
my limited computational budget.

My final takeaway for similar problems, i.e. large scale regression using images where accuracy and only
accuracy is important, would be to either train a large model with randomization to reduce overfitting such
as a convolutional neural network with data preprocessing or to instead use hardcore feature selection if
you don’t have the computational resources. Overall, I believe that I now have a much more sophisticated
understanding of image processing and object recognition, ensemble methods, and convolutional neural
networks.

References

[1] Banerji, Manda, et al. ”Galaxy Zoo: reproducing galaxy morphologies via machine learning.” Monthly
Notices of the Royal Astronomical Society 406.1 (2010): 342-353.

[2] Willett, Kyle W., et al. ”Galaxy Zoo 2: detailed morphological classifications for 304 122 galaxies from
the Sloan Digital Sky Survey.” Monthly Notices of the Royal Astronomical Society 435.4 (2013): 2835-
2860.

[3] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. ”ImageNet Classification with Deep Convolu-
tional Neural Networks.” NIPS. Vol. 1. No. 2. 2012.

[4] Geurts, Pierre, Damien Ernst, and Louis Wehenkel. ”Extremely randomized trees.” Machine learning 63.1
(2006): 3-42.

10

	Introduction
	Galaxy Zoo Challenge
	Interpreting the problem
	Background & related work
	My approach in context

	Methods
	Preprocessing
	Algorithm: Extra-Trees
	Model Parameters
	Performance, Training and Validation

	Results
	Feature importance
	Error analysis
	What didn't work
	How I placed

	Discussion and Conclusions

